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Executive Summary 

This report describes the methodology of modelling renewable energy auctions and their outcomes 

from a game theoretic perspective (agent-based model) as well as from the overall energy system 

model perspective (Green-X model). 

The agent-based model can depict a variety of auction schemes and their respective design elements 

as well as regulatory features as e.g. restrictions to participation. Pay-as-bid and uniform pricing 

auctions can be shown, either as a one-shot auction or a multi-round auction that allows participants 

and the auctioning entity to learn. It is furthermore possible to model the agents in a very detailed 

manner, to depict the respective auction participants in a country or to investigate a certain question 

concerning the auction outcome. Several applications of the model in AURES D7.3 “Model-based 

analysis of specific cases” will make this clearer. 

Within the course of AURES we have extended the applicability of auction-based RES support in TU 

Wien’s Green-X model, a well-established (sectorial) energy system model that allows for conducting 

RES-related energy policy assessments in the European context. The extended version of the model 

will be applied in the AURES project to conduct a comparative assessment of the performance of 

auctions to other instruments used for incentivising of renewable energy deployment. Within this 

report we introduce the modelling system, inform on key assumptions and provide an outlook on the 

envisaged application, shedding light on how the EU can reach the 2030 RES target by use of 

auctions or through alternative policy instruments. 
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1 Introduction 

This methodology report is dedicated to provide the theoretical and conceptual background 

information on how auction schemes are represented in modelling done in the course of the AURES 

project. We will thereby also inform on the planned application of the models developed / extended. 

Please note however that the outcomes of the analyses performed / planned are not part of this report 

– these can be found in the forthcoming AURES report D7.3. 

As a first step, we describe in the subsequent section 2 our game theoretic approach concerning the 

modelling of RES-related auction schemes. More specifically, we inform the interested reader how 

we model the outcome of different auction designs as developed in AURES WP2 “Framing and 

conceptual aspects of auctions for RES-E” and WP3 “Auction designs, implications, and application 

options for RES-E”. Based on that, we derive possible implications on auction outcomes in country, 

regional and EU wide modelling exercises which are presented in WP7 “Future implementation 

possibilities for auctions in Europe”. The model will formally capture the incentive structures of RES 

investors from auctions and reveal the consequences on societal support costs. We show different 

auction design elements the policy maker can make use of to set incentives in a way that desired 

outcomes can be fulfilled. The analysis includes the integration of incentive structures at different 

levels of detail and aggregation. This micro-economic perspective will deliver new insights on 

investment incentives for RES investors under different auction designs. The newly developed game 

theoretic model can display strategic behaviour by market participants and very closely model 

different EU member states’ auction schemes.  

Furthermore, a top-down perspective will be adopted within section 3 of this report. Here we put 

auction design options into the broader energy policy context. This allows analysing their impact on 

societal support costs and their comparative performance. This will be done by use of TU Wien’s 

Green-X model – a well-established simulation model for assessing the impact of energy policy 

instruments on future RES developments. In this section we describe the modelling approach, inform 

briefly on the undertaken extension in the course of AURES and provide an outlook on the planned 

application of this tool in the course of AURES. Generally, the work planned  aims for complementing 

the perspective of considering particular cases in WP4 and WP6 with information on the impact of 

auctions for all EU MS.  
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2 Game theoretic modelling of RES auctions  

This section defines the overall modelling framework and develops and calibrated a game-theoretic 

model. The tool provides insights and concrete guidance on how to employ certain auction design 

elements (as quotas or limits for participation or penalties and pre-qualification criteria) and delivers, 

in combination with AURES task 6.3 “Alternatives to auctions”, the tools for a realistic and fine-tuned 

energy system modelling. The model is agent-based, programmed in Python and is informed by 

auction theoretic insights.  

In the modelling of auctions, the focus is on strategic behaviour, specifically learning between auction 

rounds but also on individual optimization of bidding strategies given the respective background, 

incentives, and planning horizon of the auction participants. Furthermore, the variation of design 

criteria of auctions requires rethinking the strategic behaviour. We also consider how policy makers 

pursue additional policy objectives like agent diversity, and compare them with alternative options.     

To best reflect the underlying market structure and the number and size of the actors involved, the 

agent-based modelling approach proved to be best suited to tackle our research questions. The 

model is based on auction theoretic foundations and includes empirical data (on RES technology 

costs, the structure of different technological sectors and previous auction results) to the highest 

resolution possible.  

Different market structures have been modelled by adjusting the following parameters: the 

participants in the auction, the technology and its costs, the size and structure of the market and the 

auction design (including e.g. timing, ceiling prices, scope, technology focus and policy goals to be 

achieved among others). Selected auction designs, namely uniform pricing and pay-as-bid (PAB) 

have been tested. These have been equipped with various design features that were previously 

established in WPs 2 and 3.  

The overall modelling framework ensures consistency throughout the different modelling approaches 

within this work package with respect to the applied parameters and methodologies. It is intended to 

calibrate the models to assess selected case study regions or countries in WP7. The definition of the 

regions will draw on the case studies that are selected in WP7, in order to create a strong link between 

the quantitative analysis of this task and the case cooperation.  

2.1 Literature Review and Theoretic Background 

The model has its foundation in two large areas of economic research, auction theory and agent 

based modelling. This short literature overview gives insight into the underlying theory and justifies 

the choice of methods for the analysis that follows in AURES D7.3 “Model-based analysis of specific 

cases”.  
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The first important strand of literature deals with auction design elements. Auctions for renewable 

energy (with a few exceptions, as e.g. offshore wind) are multi-unit auctions – and there have so far 

been few theoretical analyses of this particular setting. The most important auction theoretic design 

elements that have been introduced into our model and the depiction of the agents participating in 

the auctions are shown in the following. For more detailed information on the respective design 

elements, please refer to AURES WP2 “Framing and conceptual aspects of auctions for RES-E”. 

Auctions are one form of market-based allocation mechanisms, which provide an efficient1 approach 

whenever information asymmetry between an agent and a principal exists (McAfee and McMillan, 

1987). Allocating the support for RES via an auction can improve the efficiency of the allocation and 

thereby the overall efficiency of the support system (Klessmann et al., 2015). The present model can 

be applied for pay-as-bid (PAB) and uniform pricing auctions2 as these pricing rules are the most 

widely used “in situations in which the marginal values are declining - that is, the value of an additional 

unit decreases with the number of units already obtained” (Krishna, 2010). This is also true for 

renewable energy auctions, where multiple goods are auctioned.3  

Onshore wind power auctions are examples of such multi-unit auctions, as are auctions for large-

scale PV projects. Precisely, a certain capacity of power is tendered. In each round, different bidders 

enter with their projects of different scopes and sizes. Since the auctioning entity ( for simplifying 

reasons named auctioneer) procures a specific capacity, the good can be defined as homogeneous 

from an auctioneer’s point of view according to the theory of (Myerson, 1981).  

Besides the pricing rule, a variety of other design elements distinguishes auctions. These elements 

help derive efficient outcomes and adapt the auction to the needs of the auctioneer and the market 

environment (see e.g. Kreiss et al., 2017). In the following, a (non-exhaustive) overview on the most 

important design elements used in RES auctions is presented. 

                                                   

1 Efficiency here and in all following parts of this paper refers to the concept of allocative efficiency i.e. the distribution of 

the resources (support for renewables in a pareto efficient way). 
2 We distinguish static auctions, which include the two assessed formats (pay as bid and uniform pricing) and dynamic 

auction formats. Dynamic auction formats allow agents to react on their competitors’ bidding behaviour during the course of 

an auction, whereas static auctions are so-called “one shot” auctions, meaning that each agent submits a bid and theses 

bids are then ranked in order of their respective amount. 

3 Single unit auctions, on the other hand, are usually applied when only one good with uncertain valuation to the auctioneer 

is sold (Krishna, 2010). In RES auctions, this is the case when a certain project is auctioned for realization, e.g. the offshore 

wind power auctions in Germany or in Denmark, in which the participants bid for the right of implementing one specific 

offshore wind farm, for which the plans have been already outlined. 
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Price limits (minimum- or ceiling prices) are an important auction design feature that is regularly used 

in renewables auctions. How to set this price is a crucial issue since it affects the level of competition 

and technological diversity (Del Río, 2015). Price limits can be implemented in our model, in a static 

or dynamically adapting manner.  

In some market environments, it makes sense to introduce certain measures to ensure actors’ 

diversity and reduce market power. Such design elements include restricting the number and size of 

bids, setting a minimum participation number for the auction to be carried out or limiting the number 

of rounds a bidder can participate. These measures can be implemented in our model as well, 

depending on the respective market that is simulated (e.g. restrictions for arable land in the German 

PV auctions). 

As shown in AURES D7.3 “Model-based analysis of specific cases”, the auctioneer can define 

penalties and pre-qualifications. Furthermore, the model allows comparing technology neutral and 

technology specific auctions. Restrictions on agent participation and their impact on auction results 

are also shown. All details of these implementations and their results are also shown in AURES D7.3.  

There are many other additional features from auction design that can be made use of in auctions for 

renewable energy. This overview has presented only the features that have been implemented 

throughout the case studies assessed by our game theoretic model and is not yet exhaustive. We 

however intend to make the model’s possibilities and limitations clear in the following sections and 

thus close the theoretical overview with these main features. The interested reader can refer to other 

reports of the AURES project where the complete technical and theoretical background is presented 

in more detail: An assessment of various implementation and design strategies for RES-E auctions 

in the EU is provided by the AURES project (del Río et al., 2015; Haufe & Ehrhart, 2016).  An analysis 

of key elements to designing RES auctions is provided by IRENA (2015). A comprehensive overview 

of experiences and best practices is shown in Wigand et al., 2016.  

The second important section of this literature review is on previous applications of agent based 

modelling (ABM) in the energy or more specifically the electricity sector. This is especially important, 

as our model uses an agent-based approach and as the respective bidders’ behaviour over time is 

approximated with a learning algorithm which also stems from agent based modelling.  

The following overview shows past applications of ABM in energy research. Several studies applying 

the ABM approach were published in energy research, whereas they often model an electricity (spot) 

market with a vast amount of agents in frequently occurring auctions, as e.g. power market 

simulations in Fraunhofer ISI’s model PowerACE (Genoese and Fichtner, 2012) or the EMLab 

Generation Model by TU Delft (Chappin, 2013). Furthermore, a substantial amount of literature exists 

where ABM has been used to display and model complex interactions on the broader electricity 
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market, i.e. modelling different agent’s (TSOs, generators, regulatory institutions, consumers) 

behaviour and their respective interacting and sometimes contradictory objective functions and 

constraints, see e.g. Kiose and Voudouris (2015) and Widergren et al. (2006). ABM has also been 

used to assess different market design elements and policies for renewable subsidies, as shown in 

currently published research by Iychettiria (2016). Auctions for renewable energy have, to our 

knowledge, not yet been analysed using an ABM design. Among the studies on agent-based 

electricity market models, comparing PAB and uniform pricing has been a popular research question 

in the past (Weidlich and Veit, 2008). Further scientific energy-related auction literature applying an 

ABM approach is e.g. Kiose and Voudouris (2015), Veit et al. (2009), Bunn and Oliveira (2001), or Li 

and Shi (2012) among others.  

Adaptation is also an important feature of agent-based modelling (Dam et al., 2013). As this paper 

focuses on the procurement auctions of renewable energies with a very clear time horizon and only 

a limited amount of rounds, the possibility of learning effects for the agents is limited. Nevertheless, 

a certain amount of learning is still implemented as shown in the following section.  

Finally, empirical literature on auctions for renewables has been consulted for our model. This 

section is kept brief. A substantial amount of assessments took place in the various countries that 

tested auctions for renewable energy subsidies or even permanently implemented a support system 

based on auctions. However, many of these assessments are confidential, so the empirical literature 

consulted is usually restricted to studies by renewables associations, regulators or third parties. The 

literature most relevant for the country cases we analysed is presented in the modelling cases in 

AURES D7.3. This literature specifically concerns sources for our input data, namely size of markets, 

distribution of market participants, prices and design criteria. For further information, please refer also 

to AURES WP4, which treats empirical aspects of auctions for RES.  

 

2.2 Modelling Framework  

Figure 1 depicts a modelling framework, explaining how the agents’ behaviour and the auction 

outcome are interlinked. There are several points of interlinkage and feed-back and a lot of information 

on the market and technologies has to be taken into account when assessing auctions for renewable 

energy.  
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Figure 1: Modelling Framework for RES Auctions 

 

2.2.1 Agent-specific characteristics  

When simulating auctions, an agent is assumed to behave rationally, i.e. bid her own costs and try to 

maximize her possibility of winning (over time). Furthermore, the agent is characterized by her 

attributes, namely the size of her wind power project, and her bidding behaviour – the bid function 

and the implemented learning algorithm. 

To take a certain degree of learning effects due to multiple realized projects and overall learning 

effects in the industry into account, the model includes an optional cost digression. Whenever an 

agent’s bid is successful in an auction, her cost in ct/kWh decreases by a certain factor due to 

economies of scale. Furthermore, overall costs decrease per round for all agents equally, depending 

on the technology. This can be further adapted depending on the time horizon and specifics of the 

auction design that is assessed. In a one-shot auction where an agent can bid into multiple bidding 

years, the agent assumes different cost for each year. In sequential auctions, costs decrease 

accordingly. Furthermore, as agents get to know previous auction results, in sequential auctions 
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agents can refine their bids by learning about competition and previous price levels. These 

parameters are implemented into the agent’s bid function in the pay-as-bid auction format (we assume 

bidders to always bid their true costs in Uniform pricing, according to theory). All these features are 

adaptable and interchangeable and allow a very detailed modelling of the respective auction scheme 

in different countries.  

In order to design the model efficiently, types of model agents have to be selected. The agents can 

differ in size, costs, long-term planning horizon, legal restrictions (i.e. when they bid for restricted 

areas as the arable land in Germany) and other features. This task obviously requires some 

aggregation and depends on data availability. Data assessed for this task were e.g. reports by 

renewables associations, official statistics, previous auction results if available or other studies on the 

respective markets. Implementing the correct share of each agent type participating in the auctions 

is crucial for a realistic simulation of the auctions. It is furthermore important to implement how the 

agent distribution changes in multi-annual auctions.  In all auctions that include multiple rounds, a 

number of new agents are drawn to participate in the next auction after each round. Their numbers 

are drawn from a discrete uniform distribution. How this is implemented again depends on a variety 

of factors: ceiling prices, available areas, restrictions in participation agent’s planning horizon etc. To 

model this, we either make use of empirical auction outcomes, or, if these are not (yet) available, we 

make assumptions according to the respective technology sector in the specific country analysed. A 

variety of these design elements have been taken into account to the extent feasible and necessary 

for answering the respective policy questions in different country cases in AURES D7.3. In these 

applications, the procedure will become clearer.  

The corresponding quantity offered by each agent is also drawn from a discrete uniform distribution. 

To model the difference in the ability of realizing certain sizes of projects, agent types can be assigned 

a different distribution.  

Agents’ bidding behaviour over multiple rounds can also differ. The time until re-entry into the auction 

is modelled as a uniformly distributed, discrete random variable that can be varied. Due to model 
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simplification reasons, we do not have bidders enter multiple projects in one round. Successful 

bidders can however immediately participate in the next round with a new power quantity that is again 

drawn randomly from their assigned distributions. 

Risk aversion can also be accounted for in our model. It is assumed that larger agents can bear higher 

risks since they can better diversify their portfolio and command the resources for long-term 

optimization. The smallest auction participants can thus bear the least risk (Klessmann et al., 2015). 

We assume that winning a bid in a future round is less preferable for them compared to larger 

participants who have more options for bidding strategically and diversifying, e.g. see del Río and 

Linares (2014). They thus discount future revenues more heavily. Furthermore, risk aversion and 

strategic behaviour can be depicted via the bidding function. An agent receives a certain signal, i.e. 

a range from which he or she derives the costs and the resulting bid. We always assume agents to 

behave rationally. However, in case when agents do not receive a penalty or when they do not have 

any sunk costs due to prequalification criteria, there is an incentive for them to bid at the lower range 

of their assumed costs, thus increasing their risk bidding below their true costs. This change in risk 

aversion due to different auction designs can also be accounted for in the model.  

2.2.2 Bid functions 

In auction theory, the bid function maps an agent’s cost for realizing the project (or valuation of a 

good) to a bid price. Agents can receive b (their bid) in PAB, the highest accepted or lowest not 

awarded bid in uniform pricing, or 0 depending on the auction’s outcome and try to maximize their 

profit (Krishna, 2010).  

Uniform Pricing 

Uniform pricing means, that all successful bidders receive the same remuneration, which is in our 

model determined by the lowest rejected bid. The bid function is derived from auction theory. Several 

studies have shown, that bidding one’s own cost in a multi-unit auction with uniform pricing (when the 

agent only places a bid for one unit) or in a second price auction – the single unit equivalent – is a 

weakly dominant strategy (Milgrom, 2004). 
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𝑏𝑖 = 𝑐𝑡 

In our model, agents therefore bid truthfully (their exact costs ct) in every round of uniform pricing. 

According to theory, the outcome of a functioning uniform pricing regime is incentive compatible 

(Klemperer, 2004). Uniform pricing serves as a benchmark case in the analysis, as the bidding 

strategy is not influenced by parameters other than the agent’s cost.  

Pay as bid 

Under discriminatory pricing rules (first-price sealed-bid and PAB), successful agents are paid exactly 

their bid bt. Due to this fact, bidders will at least bid their individual cost, usually with a certain margin 

on top. In auction theory, this behaviour is known as ”bid-shading” (Menezes and Monteiro, 2005). 

Under the PAB pricing mechanism, the agent maximizes her expected profit π over her chance of 

winning and the amount received in case of being successful by adjusting her bids accordingly and 

taking into account the possibility to win in the following rounds. In general, the higher her bid is, the 

lower her probability to win in the auction but the higher the profit in case of winning (e.g. Samuelson 

(1986), McAfee and McMillan (1987)). If the auctions are designed as sequential multi-unit auctions, 

the bid vector b contains all the bids from the current round t until the last round in T. The discount 

factor is 0 < δ <1, since winning in a future round is less favourable (Sugianto and Liao, 2014), and ct 

is the agents’ specific cost in round t. If we look at a one-shot auction, the model is implemented in a 

similar way but without learning. 

 

Assuming that the agents participate with only a single project in each round, they can only take part 

in the following rounds with their specific project if their current bid is unsuccessful. Consequently, the 

expected profit in one of the following rounds has to be adjusted by the probability of losing in the 

past auctions. Thus, the current bid not only influences the current expected profit, but also the future 

ones, as the profit of the specific project is maximized taking into account a specific period of time 

and the expected probability of winning over all auction rounds. Adjusting the discount factor 𝛿𝑡 
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enables to account for the specific risk aversion of each agent type. The expected utility is calculated 

in each round, with T being the final round.  

for t=0,1,2,...,T 

𝐸(𝜋(𝒃)) = ∑ 𝛿𝑖−𝑡

𝑇

𝑖=𝑡

⋅ (𝑏𝑖 − 𝑐𝑡)

⋅ 𝑃𝑟("𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑏𝑖𝑑 𝑖𝑛 𝑟𝑜𝑢𝑛𝑑 𝑖") ∏ 𝑃𝑟("𝑢𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑏𝑖𝑑 𝑖𝑛 𝑟𝑜𝑢𝑛𝑑 𝑖 − 𝑥")

𝑖−𝑡

𝑥=1

) 

As agents should include the level of competition into their expected profit, the concept of order 

statistics (Ahsanullah, Nevzorov, & Shakil, 2013) has been implemented: In order to determine the 

probability of submitting a successful bid, the agent assumes n-1 participants (without her) with ns 

(successful) bidders being able to win in the auction round. Therefore, at least the ns
th lowest out of 

the n − 1 other participants’ bids has to be higher than her own one b t. The agents assume the 

competition and the number of winners to be the same as in the preceding auction round. Due to a 

lack of information in the first round, they there assume a certain amount of competitors and a certain 

number of successful bidders. This again depends on the market characteristics and auctioned 

capacity among other factors. We further introduce a cumulative distribution function (CDF). This 

function F(·) which captures an agent’s belief on the other participants bid distribution and specifically, 

the probability that another bid bj is lower, hence Pr (bj < bi). Consequently, 1−F(bi) depicts the 

probability of her own bid being lower than her opponent’s. Based on the approach in Ahsanullah et 

al. (2013), we can calculate the probabilities in the following way: 

 

Although the above equation is based on the auction-theoretic concept of first-price sealed bid 

auctions (McAfee & McMillan, 1987), we won’t derive a bid function taking into account the other 
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bidders’ behaviour. In this simulation, the above equation will be solved using maximization 

algorithms.  

 

2.2.3 Learning algorithms 

Agents, as autonomous entities, should be able to adapt their behaviour to changes in the system to 

simulate a realistic environment and learn from past occurrences. Information provided by the 

auctioneer flows into the learning algorithm implemented in the simulation for the PAB pricing rule. 

Each agent optimizes his expected payoff over the entire time horizon. As shown previously, the 

expected profit depends on the parameters of the cumulative distribution function (CDF). The CDF is 

modelled as a normal distribution, similar to modelling the distribution of the market clearing price in 

electricity markets (Azadeh et al., 2012, Bhattacharya 2000, Rahimiyan and Rajabi Mashhadi, 2008, 

Rahimiyan and Rajabi Mashhadi, 2007. This function F(·) which captures an agent’s belief on the 

other participants bid distribution and specifically, the probability that another bid bj is lower, hence 

Pr (bj < bi). Consequently, 1−F(bi) depicts the probability of one’s own bid being lower than an 

opponent’s. 
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Figure 2: Simplified learning algorithm 

 

Therefore, the mean value (μ) can be seen as a central configuration parameter besides the standard 

deviation. The agents’ learning algorithm consists of adapting μ to new information generated 

throughout the course of the auctions. In the first round, the assumptions on μ of F(·) are based on 

each agent’s own signal (her cost) which is the best approximation regarding the other agents’ bids 

(Krishna, 2010). In the course of the auctions, new information becomes available, which is 

incorporated by the agents: they adjust the CDF, by updating μ with the last round’s overall mean bid. 

This definition of learning is one of the main properties of ABM (Woolridge & Jennings, 1995): the 

environment – in our particular case the overall mean bid and the number of (successful and overall) 

participants – influences the agents’ behaviour and in return the agents’ individual bids have an impact 

on the overall average bid. 

 

2.2.4 Simulation rounds 

In order to derive an accurate answer to the research question, pricing rules are simulated in a number 

of iterations to receive a representative simulation result. The exact number of rounds of course 
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depends on the respective case modelled. Each agent’s bid vector is calculated before the auction 

round takes place by using a so-called “SLSQP algorithm” (Kraft, 1988)4. Using this specific algorithm 

has the advantage of defining boundaries for the optimization and thus not obtaining extreme values, 

which would be a possible result from applying a standard normal distribution. We employ the agents’ 

own cost as initial guess for the maximization algorithm. In all simulations executed, algorithm and 

model generate realistic values: Within each bid vector, the corresponding bids decrease over all 

rounds, i.e. the later an auction takes place, the more aggressive the agents’ bids become. This also 

leads each round’s current bid (bt) – which determines the specific auction’s outcome – to decrease 

(c.p.) over time.  

 

2.3 Outlook: Application of the model 

The forthcoming AURES D7.3 report will contain three separate assessments made with the game 

theoretic model: one for the UK, Germany, and Denmark respectively. Each of these modelling cases 

treat a different auction related policy question. Specifically, we investigated technology neutrality vs. 

technology differentiated auctions, agent behaviour in auctions with participatory restrictions, and the 

influence of penalties and prequalification criteria. These applications show the wide range of auction-

design related questions that the model is already able to cover. With the code being made open 

source, these questions can be expanded or assessed with different input data for other countries or 

time spans. Overall, the agent-based model serves as a very useful tool for policy advising. The 

forthcoming report AURES D7.3 will show this in more detail. Furthermore, some forthcoming 

scientific publications will give even further theoretical insights into the model’s game theoretic 

background.   

 

 

                                                   

4 SLSQP optimizer is a sequential least squares programming algorithm which uses the Han–Powell quasi–
Newton method with a BFGS update of the B–matrix and an L1–test function in the step–length algorithm. 
The optimizer uses a slightly modified version of Lawson and Hanson’s NNLS nonlinear least-squares solver 
(http://www.pyopt.org/reference/optimizers.slsqp.html). 



 

 

 18 

 

3 Prospective renewable energy system modelling 

In this task the approaches developed in tasks 4.1 and 4.2 will be used to more accurately calibrate 

and implement auction based support instruments in the Green-X model.  

Within the course of this project we have extended the applicability of auction-based RES support in 

Green-X, building on the methods developed and findings gained in tasks 5.1 and 5.2. This will allow 

to model auctions in a more realistic fashion – since in the model’s representation of auction designs 

a distinction between pay-as-bid and uniform pricing has been established. Moreover, the user can 

select to apply auctions at different layers: for single technologies, for baskets of technologies – at 

national as well as at multi-national level (e.g. European or regional level). Considering these 

improvements taken we will conduct a comparative assessment of the performance of auctions to 

other instruments used for incentivising of renewable energy deployment. Thus, the improved 

representation of auctions in the model will be used to develop scenarios of future RES-E deployment 

in the 2030 context that will inform about the policy support expenditures of different auction designs 

and their performance compared to other options for RES-E support.  

Please note that the scope and the selection of scenarios was done in accordance with the cases 

undertaken in WP3 and WP6, as well as the analysis from WP5, in order to create additional synergies 

between the Work Packages and to support policy recommendations with quantitative results in as 

many areas as possible.  

Below we introduce the modelling framework and inform on key assumptions. Next to that, an outlook 

on the planned / assessed cases is taken. 

3.1 Approach and key assumptions  

3.1.1 The applied modelling system (Green-X, complemented by HiREPs) 

The analysis will build on modelling works undertaken by the use of TU Wien’s Green-X model (cf. 

Box 1). More precisely, a quantitative policy analysis of various scenarios on future RES deployment 

up to 2030 within the EU will be used to assess the performance of auction-based RES support in 

comparison to other instruments.  
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Box 1  Brief characterization of the Green-X model 

Green-X is an energy system model that offers a detailed representation of RES potentials and 

related technologies in Europe and in neighbouring countries. It aims at indicating 

consequences of RES policy choices in a real-world energy policy context. The model 

simulates technology-specific RES deployment by country on a yearly basis, in the time span 

up to 20505, taking into account the impact of dedicated support schemes as well as economic 

and non-economic framework conditions (e.g. regulatory and societal constraints). Moreover, 

the model allows for an appropriate representation of financing conditions and of the related 

impact on investor’s risk. This, in turn, allows conducting in-depth analyses of future RES 

deployment and corresponding costs, expenditures and benefits arising from the 

preconditioned policy choices on country, sector and technology level. 

 

 

Figure 3  Model coupling between Green-X (left) and HiREPS (right) for a detailed assessment of RES 
developments in the electricity sector 

For specific purposes, e.g. for assessing the interplay between RES and future electricity market design that 

involves an analysis of the merit order effect and related market values of the produced electricity for variable 

and dispatchable renewables, Green-X was complemented by its power-system companion – i.e. the HiREPS 

model – to shed further light on the interplay between supply, demand and storage in the electricity sector 

thanks to a higher intertemporal resolution than in the RES investment model Green-X.  

Figure 3 gives an overview on the interplay of both models. Both models are operated with the same set of 

general input parameters, however in different spatial and temporal resolution. Green-X delivers a first picture 

                                                   

5 For this exercise model calculations will be however limited to the period up to 2030. 
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of renewables deployment and related costs, expenditures and benefits by country on a yearly basis (2010 to 

2030 (and up to 2050 for specific purposes)). The output of Green-X in terms of country- and technology-

specific RES capacities and generation in the electricity sector for selected years (2020, 2030 (and 2050)) 

serves as input for the power-system analysis done with HiREPS. Subsequently, the HiREPS model analyses 

the interplay between supply, demand and storage in the electricity sector on an hourly basis for the given 

years. The output of HiREPS is then fed back into the RES investment model Green-X. In particular the 

feedback comprises the amount of RES that can be integrated into the grids, the electricity prices and 

corresponding market revenues (i.e. market values of the produced electricity of variable and dispatchable 

RES-E) of all assessed RES-E technologies for each assessed country.  

3.1.2 Key parameter 

In order to ensure maximum consistency with existing EU scenarios and projections the key input parameters 

of the scenarios presented in this report are derived from PRIMES modelling and from the Green-X database 

with respect to the potentials and cost of RES technologies. Table 1 shows which parameters are based on 

PRIMES, on the Green-X database and which have been defined for this study. The PRIMES scenarios used 

for are the latest publicly available reference scenario (European Commission, 2016) and the climate 

mitigation scenarios PRIMES euco27 and PRIMES euco30 that build on the targeted use of renewables (i.e. 

27% RES by 2030) and an enhanced use of energy efficiency compared to reference conditions – i.e. 27% 

(euco27) or 30% EE (euco30) by 2030, respectively. Please note that all PRIMES scenarios are intensively 

discussed in the EC’s winter package, cf. the Impact assessment of the recasted RED (SWD (2016) 410 

final). 

Although a target of 30% for energy efficiency has already been fixed for 2030, we show ranges with regard to 

the actual achievement of energy efficiency to cover both, a higher or substantially lower level of ambition in 

terms of energy efficiency policy: Under reference conditions an improvement in energy efficiency of 23.5% 

compared to the 2007 baseline of the PRIMES model is projected for 2030, whereas in the PRIMES euco27 

scenario, assuming a strong ambition level for energy efficiency, an increase to 30% is assumed.  

Table 1 Main input sources for scenario parameters 

Based on PRIMES  Based on Green-X database  Defined for this assessment 

Primary energy prices Renewable energy technology cost 
(investment, fuel, O&M) 

Renewable energy policy 
framework 

Conventional supply portfolio and 
conversion efficiencies 

Renewable energy potentials  Reference electricity prices 

CO2 intensity of sectors Biomass trade specification   

Energy demand by sector Technology diffusion / Non-
economic barriers 

 

 Learning rates  

 Market values for variable 
renewables 
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3.2 Outlook: Application of the model  

In the forthcoming AURES D7.3 report we will present the outcomes of our energy system modelling 

exercise on the performance of RES auctions in the EU context.  

More precisely, we will build our model-based assessment of the performance of auction-based RES 

support on a recently conducted exercise done in the course of the IEE project towards2030-dialogue 

(cf. www.towards2030.eu). Therein various pathways on future RES-E support have been assessed 

at an EU level in the 2030 context – in accordance with the given 2030 EU RES target (i.e. of at least 

27% RES by 2030). We thus build on certain scenarios and undertake a complementary comparative 

assessment targeted to analyze the performance of auction-based RES support. Below we introduce 

the envisaged scenario scope. 

Scenario scope 

In general terms the analysis will shed light on the required RES uptake for meeting 27% RES by 

2030 and on RES-related costs & benefits – with a focus on the resulting policy costs (i.e. support 

expenditures). Distinct scenarios will be conducted that allow for a comparison of the performance of 

auction-based RES support with alternative policy approaches.   

Overview on RES policy scenarios used in this exercise: 

Harmonised  

Quota 

Harmonised (RES) support post 2020 (EU-

wide quotas with certificate trading for 

RES-E) 

Stringent 

State Aid  

Guidelines 

Stringent implementation of State Aid 

Guidelines (National auctions for RES-E 

support through sliding premiums with 

partial or full market opening) 

National 

Policies with  

common  

Guidelines 

National Policies with common guidelines 

(National quotas with certificate trading for 

RES-E or national auctions for RES-E 

support through sliding premiums without 

market opening) 

 

A list of RES policy (convergence) pathways has been identified in the course of the towards2030-

dialogue project. These pathways build from a conceptual viewpoint on either a top-down (i.e. those 

forms of convergence in RES policy driven by European Institutions) or a bottom-up process (i.e. 

those forms of convergence driven by Member States cooperating with each other). In our 

assessment of auction-based support we focus on the first category (top-down) involving the following 

pathways:  
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Harmonised Quota: As the most prominent representative of an EU-wide harmonised RES-E support 

we assume under this pathway that an EU-wide harmonised quota scheme will be implemented for 

supporting investments in new RES-E installations post 2020. More precisely, we take the assumption 

that an EU-wide harmonised support scheme is put in place for supporting new RES installations in 

the electricity sector that does not differentiate between different technologies. In this case the 

marginal technology to meet the EU RES-target sets the price for the overall portfolio of RES 

technologies in the electricity sector. The policy costs occurring in the quota system can be calculated 

as the certificate price multiplied by the RES generation under the quota system. These costs are 

then distributed in a harmonised way across the EU so that each type of consumer pays the same 

(virtual) surcharge per unit of electricity consumed.  

Stringent State Aid Guidelines: Another form of top-down convergence is the prescription of specific 

types of (market-based) instruments by the EU institutions to be implemented by Member States (e.g. 

strengthening of current state aid guidelines in the period 2020-2030). Specifically, we take the 

assumption that a feed-in premium system (with sliding premiums) – where support levels are 

determined in an auction procedure (with pay-as-bid) – would be the prescribed instrument to support 

investments in new RES-E installations post 2020. Moreover, two sub-scenarios were analysed: 

national auctions with partial or full-market opening whereby the latter is equivalent to an EU-

wide auction scheme in terms of performance.  

National Policies with common Guidelines: Here the EU would prescribe common guidelines that 

Member States have to respect when implementing RES-E support post 2020. This would facilitate 

the convergence process and the implementation of best practices in policy design but would leave 

the choice of a support instrument in the hands of the Member States. Consequently, we assess here 

two distinct policy approaches: National quotas with certificate trading for RES-E (without international 

trade), and national auction for RES-E support through sliding premiums (without market 

opening). 
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